Spectral decomposition for the Dirac system associated to the DSII equation

نویسندگان

  • Dmitry E. Pelinovsky
  • Catherine Sulem
چکیده

A new (scalar) spectral decomposition is found for the Dirac system in two dimensions associated to the focusing Davey–Stewartson II (DSII) equation. Discrete spectrum in the spectral problem corresponds to eigenvalues embedded into a two-dimensional essential spectrum. We show that these embedded eigenvalues are structurally unstable under small variations of the initial data. This instability leads to the decay of localized initial data into continuous wave packets prescribed by the nonlinear dynamics of the DSII equation. submitted to Inverse Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition ‎method‎

‎‎In this article‎, ‎a new method is introduced to give approximate solution to Van der Pol equation‎. ‎The proposed method is based on the combination of two different methods‎, ‎the spectral Adomian decomposition method (SADM) and piecewise method‎, ‎called the piecewise Adomian decomposition method (PSADM)‎. ‎The numerical results obtained from the proposed method show that this method is an...

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

Detailed comparison of numerical methods for the perturbed sine-Gordon equation with impulsive forcing

The properties of various numerical methods for the study of the perturbed sine-Gordon (sG) equation with impulsive forcing are investigated. In particular, finite difference and pseudo-spectral methods for discretizing the equation are considered. Different methods of discretizing the Dirac delta are discussed. Various combinations of these methods are then used to model the soliton–defect int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000